Agricultura 4.0 y la tecnología

La nueva era en la agricultura moderna utiliza la tecnología de la Internet de las cosas (IoT) para mejorar la eficiencia y productividad de los cultivos. Aprovechando las ventajas de la conectividad, crea un sistema de producción agrícola más preciso, sostenible y rentable.

La tecnología IoT permite a los agricultores recopilar datos en tiempo real sobre las condiciones ambientales, la salud de los cultivos y el bienestar del ganado, lo que les permite tomar decisiones informadas y oportunas para maximizar el rendimiento de sus cosechas. Conozcamos más el contexto de su importancia:

Para el 2050, se prevé que la población mundial alcance los

700 millones

de habitantes

por lo que el mundo enfrenta el gran desafío de satisfacer la demanda con recursos

De hecho, para alimentar a esa cantidad de personas, la industria agrícola necesitará **generar 70% más alimentos con solo un 5% más de tierra**.

La agroindustria 4.0 permite la organización de los recursos y procesos en las etapas que se gestionan durante la cadena de producción agrícola, transformando dicha actividad para que sea **más eficiente, sostenible y produzca alimentos de calidad.**

En 2020, muchos países de Latinoamérica, los cultivos agrícolas aportaron de manera significativa al PBI:

Chile 3.28%

Colombia 7.43% Perú 6.97%

Ecuador 9.41%

Brasil 6.89%

Argentina 7.13%

mentado agricultura de precisión.

El 85% de las granjas en USA ya ha imple-

Se prevé que sea una de las tendencias más influyentes en el corto y mediano plazo.

Se espera que este 2023, el mercado global de Smart Farming alcance los

\$13,500 millones

Mayor rentabilidad para empresarios agrícolas

La tecnología IoT ha demostrado que puede reducir en costos operativos en un 10% a 15%.

El uso de sensores y herramientas de mo-nitoreo nos permite medir variables am-bientales que son críticas para la productividad del suelo, como:

Temperatura Humedad

Nutrientes

Velocidad

del viento

atmosférica

Presión

Dióxido

pН

de carbono

y enfermedades Rendimiento Luminosidad

de los cultivos

Densidad de siembra

Conductividad eléctrica del suelo

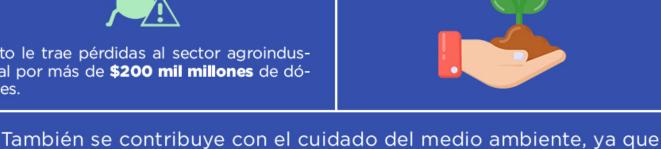
Gracias a estos datos, se puede reducir la cantidad de agua utilizada en el riego en un 40%, lo que ayuda a conservar los recursos hídricos.

del suelo.

Gracias a los sensores IoT, en el control de

Esto gracias a los sensores de humedad

cultivos.


Las plagas destruyen cada año hasta un

40% de toda la producción mundial de

trial por más de \$200 mil millones de dólares.

plagas, redujo el uso de pesticidas en un 80% y aumentó el rendimiento de los cultivos en un 50%.

gases de efecto invernadero en un 12%

utilizar sensores IoT ayuda a reducir la cantidad de emisiones de

Fuentes

Accenture. (2022, febrero 23). HFS ranks Accenture the no. 1 IoT service provider for the second time in a row. Accenture. https://newsroom.accenture.com/news/hfs-ranks-accenture-the-no-1-iot-service-provider-for-the-second-time-in-a-row.htm

ALTA wireless soil moisture sensor. (s/f). Monnit. Recuperado el 21 de marzo de 2023, de https://www.monnit.com/products/sensors/soil-moisture/cb/?gclid=CjwKCAjwq-WgBhBMEiwAzKSH6ASAcb6xx214SImgANHAInd_02NuBx4J4OxKkBwpqazZnN58AxE8cBoC4OEQAvD_BwE

Carbon neutrality. (s/f). Umich.edu. Recuperado el 21 de marzo de 2023, de https://planetblue.umich.edu/campus/goals/carbonneutrali-

El potencial de la Cuarta Revolución Industrial. (2018, octubre 25). Deloitte Perú.

Industria 4.0. (2021, junio 3). Deloitte Perú. https://www2.deloitte.com/pe/es/pages/strategy/articles/industria-4-0.html PricewaterhouseCoopers. (s/f). ¿Cómo utilizar el internet de las cosas para reducir costos? PwC. Recuperado el 21 de marzo de 2023, de

https://www2.deloitte.com/pe/es/pages/energy-and-resources/articles/el-potencial-de-la-cuarta-revolucion-industrial.html

https://www.pwc.com/mx/es/opinion/utilizar-iot-para-reducir-costos.html Smart Agriculture Market. (s/f). MarketsandMarkets. Recuperado el 21 de marzo de 2023, de

https://www.marketsandmarkets.com/Market-Reports/smart-agriculture-market-239736790.html

Stewart, J. (2021a, septiembre 3). Conoce en qué consiste la agricultura de precisión. Trackit Agro. https://www.trackitagro.com/conoce-en-que-consiste-la-agricultura-de-precision/

Stewart, J. (2021b, septiembre 20). ¿Qué es la agricultura digital? Trackit Agro. https://www.trackitagro.com/que-es-la-agricultura-digital/

Stewart, J. (2021c, noviembre 26). Descubre los 4 beneficios de la agricultura digital. TrackitAgro. https://www.trackitagro.com/descubre-los-4-beneficios-de-la-agricultura-digital/

Stewart, J. (2021d, noviembre 26). Software de aplicación en la agricultura: cómo integrar todas las variables en un solo lugar. Trackit Agro. https://www.trackitagro.com/software-de-aplicacion-en-la-agricultura-como-integrar-todas-las-variables-en-un-solo-lugar/

World food and agriculture - statistical yearbook 2022. (2022). FAO.

https://doi.org/10.4060/cc2211en Agricultura, valor agregado (% del PIB) - Peru. (s/f). Bancomundial.org. Recuperado el 21 de marzo de 2023, de https://datos.bancomundial.org/indicador/NV.AGR.TOTL.ZS?end=2021&locations=PE&start=1960&view